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FOREWORD

This is a progress report on the research project “ Numerical Solutions of Three-Dimensional
Navier-Stokes Equations for Closed - Bluff Bodies” for the period ended May 31, 1992. Specific
efforts during this period were directed in the area of “Investigation of Advancing Front Method
for Generating Unstructured Grid.” -

This work was supported by the NASA Langley Research Center through Cooperative
Agreement NCC1-68. The cooperative agreement was monitored by Dr. Robert E. Smith, Jr.,
of the Analysis and Computational Division (Computer Applications Branch), NASA Langley
Research Center, Mail Stop 125.
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SUMMARY

Investigation of Advancing Front Method
for Generating Unstructured Grid.

A. M. Thomas® and S. N. Tiwarit
Old Dominion University, Norfolk, Virginia 23529

In this report advancing front technique is used to generate an unstructured grid about simple
aerodynamic geometries. Unstructured grids are generated using VGRID2D and VGRID3D
software. Specific problem considered are NACA 0012 airfoil, bi-plane consisting of two NACA
0012 airfoil, a four element airfoil in its landing configuration and an ONERA M6 wing. Inviscid
time dependent solutions are computed on these geometries using USM3D and the results are
compared with standard test results obtained by other investigators. A grid convergence study
is conducted for NACA 0012 airfoil and compared with structured grid. Structured grid is
generated using GRIDGEN software and inviscid solutions computed using CFL3D flow solver.

The results obtained by unstructured grid for NACA 0012 airfoil showed an asymmetric
distribution of flow quantities and a fine distribution of grid was required to remove this
asymmetry. On the other hand structured grid predicted a very symmetric distribution but when

the total number of points were compared to obtain the same results it was seen that structured

grid required more number of grid points.

Graduate Research Assistant, Department of Mechanical Engineering and Mechanics.

' Eminent Professor, Department of Mechanical Engineering and Mechanics.
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1. INTRODUCTION

A problem of great concern in computational fluid dynamics is the generation of suitable

grids. Despite considerable effort devoted toward the development for various grid generation

methods, the process of developing a quality grid around a complex configuration and getting

a flow solution still remains a challenging task.

A grid is defined as a set of points with appropriate connections between the points. The
points act as reference positions thhmtge ﬁeld at which the flow variables are to be computed
and the connections between the points act as pathways for transferring information around the
computational domain. In a structured grid the connectivity between the points is explicitly
defined through a curvilinear coordinate system. In an unstructured grid the connectivity can
be arbitrary and therefore must be specified. Solution methods that utilize a structured grid are
generally more efficient than an unstructured grid solution method. However unstructured grids
provide a much greater degree of flexibility than is available with a structured grid. In particular,
unstructured grids can discretize a highly complex domain easily and are suitable for performing

localized grid enrichment in solution adaptive methods.

There are a variety of methods for generating unstructured grids. Among the different
techniques are Delauny triangulation methods [1], the modified Octree method [2] and the
advancing front technique [3]. In the present study, an advancing front technique is used to
generate the unstructured grid for a variety of geometries. This method was selected because it

does not require a separate library of modules to distribute grid points throughout the domain in
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advance like the Delauny triangulation methods. The main disadvantage of the modified Octree

method is that it has the difficulty of correctly defining the boundary segments.

There are a number of software available to generate structured grid. Among the various
codes available, GRIDGEN [4] code is used to generate structured grid around NACA 0012

airfoil. This code provides an efficient means of developing multiple block grid for complex

configurations.

Steady state Euler solutions are computed using USM3D [5] on unstructured grids and
CFL3D [6] on structured grids. The results obtained for NACA 0012 airfoil are plotted and
compared.

The objective of this report is to describe our experience with the advancing front algorithm
for several test problems and to conduct a comparative study with structured grids. Steady state
Euler solutions computed on these grids using the USM3D and CFL3D flow solver are presented.
The grid generation technique is described in Sec. 2 and the flow solution methods are explained

in Sec. 3. The numerical results are presented and discussed in Sec. 4.
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2. GRID GENERATION

2.1 Unstructured Grid Generation

In this study unstructured grids are generated around simple 2-D and 3-D geometries. A
2-D version of the unstructured grid generation package (VGRID2D) is used to generate the
2-D grids. The input file contains the points defining the surface of the airfoil with connectivity
table. A background grid is then setup which in 2-D is in the form of triangles. The background
grid defines the local grid characteristic such as grid spacing. A typical background grid for a
NACA 0012 airfoil is shown in Fig. 2.1. The 2-D grid is generated by first placing points on
the boundary segments that define the solution domain, and then discretizing the interior region.
A program has been developed (GEN3D) that uses the generated 2-D grid and duplicates it in

the third direction, to form prism elements. Using the prism centroid, each prism is divided

into eight tetrahedral cells.

2.2 Structured Grid Generation.

Structured grid is generated around NACA 0012 airfoil using GRIDGEN software. This soft-
ware essentially consists of three main codes, GRIDBLOCK, GRIDGEN2D, and GRIDGEN3D.

These are discussed below.

GRIDBLOCK : This is used to dévélop blocking structures and set interblock connections.

The surface definition for NACA 0012 airfoil is read in, which is the same as the one used for

3 ’ .
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the unstructured grid. A single block is used to define the whole domain. The 3-D lines are
drawn which define the edges of the block. Computational directions and dimensions are added
to the system. After the blocking strategy, flow boundary conditions are applied on all the faces
of the block.

GRIDGEN?2D : This is used to generate surface grids on the six faces of the block. The grid
is generated in components using the block edges. The block edges are then used as boundary
condition for block faces and the resulting block faces are used as boundary condition for the
block interior. Each of the four edges of a subface is generated before proceeding to the interior.
The grid point spacing is defined when distributing points on these edges. The spacing around
the airfoil is maintained approximately the same as that in the unstructured grid. Grid points
interior to the subface are generated using the elliptic solver to achieve orthogonality near the
surface of the airfoil.

GRIDGENS3D : This program is used to distribute points within the interior of the block

to generate volume grid. This is accomplished with the batch procedure of GRIDGEN3D and

run on the Cray-super computer.



3. GOVERNING EQUATIONS
AND METHOD OF SOLUTION

3.1 Structured and Unstructured Grids

The governing equations are the 3-D unsteady Euler equations for inviscid compressible
flow. For a bounded domain 2 with a boundary 62, the time dependent Euler equations in

integral form can be written as

%///de +//F(Q)ofzd§’ =0 (3.1)
Q an

(P ) ( (pu, pv, pw) )
pu (pu2 + P,puv,puw)

Q =< pv 3 and F(Q) = 4 (pvu,pv2 + P,pvw) >
pw (pwu, puwv, pw® + P)

\ peg ) L ((peo + P)u, (peo + P)v,(pe, + P)w) )

In the preceeding equations, p is the density, u, v and w are the z, y, z components of the
velocity, ¢, is the total energy per unit volume and P is the pressure. The equations are non-
dimensionalized by a reference density p, and speed of sound a,,. Assuming an ideal gas,

the pressure is written as

P=(y- 1)(60-— %p(u2+v2+w2)) (3.2)

where v represents the ratio of specific heats.



The inviscid flow field is computed with a three-dimensional upwind flow solver (USM3D)
developed at NASA/LaRC [4].The spatial discretization is accomplished with a cell centered
finite volume formulation using the flux difference splitting pliocedure. The solution is advanced
in time using a 3-stage Runge-Kutta time stepping scheme. Local time stepping and implicit
residual smoothing are used to accelerate the convergence of the solution to a steady state.

For the structured grid the time dependent Euler equations are similar to Eq. (3.1). The
unsteady three dimensional equations are solved by a 3-factor implicit time advancement
algorithm (CFL3D) which uses a block tridiagonal inversion. Here also local time stepping
and implicit residual smoothing are used to accelerate the convergence of the solution to a

steady state.

Boundary Conditions

For the solid boundaries the flow tangency condition is imposed. A condition of zero mass
and energy flux through the surface is ensured. Characteristic boundary conditions are applied to
the far field subsonic boundary. At an outflow boundary, the two tangential velocity components

and the entropy are extrapolated from the interior while at an inflow they are specified as having

far-field values.



4. RESULTS AND DISCUSSION

Results obtained for different cases and conditions are presented in this section.

Case 1

A NACA 0012 airfoil has been used to validate the algorithm developed. The program
considers the 2-D grid points and extends them to a 3-D configuration compatible to the flow
solver. The computational domain is bounded by a rectangular box with boundaries at -10 <
x<10,0<y<20, -10 < z < 10, where the airfoil chord length is one. Initially a coarse
grid was generated from VGRID2D consisting of 112 cells, 585 points with 53 boundary points
(Fig. 4.0). After going through the 3-D algorithm in which five planes were specified, the 3-D
configuration had 35584 cells, 7373 points with 1344 boundary points.

The computations were performed at a CFL number of 4.0 and Mach number of 0.5 with
zero angle of attack. For this case, the flow field should be symmetrical about the airfoil and
no shock should occur. The solutions were started from free stream initial conditions with the
first order scheme. When the RMS average of all residuals dropped by one order of magnitude

the solver was switched on to the higher order scheme.

Figure 4.1 shows the convergence history with a decrease of approximately 2.5 orders of

magnitude. This figure also shows the total lift and drag which are seen to be constant throughout

the computational period.

The percentage of total pressure loss over the surface is shown in Fig. 4.2. It can be
seen that the pressure losses are symmetrical about the airfoil. The maximum magnitude of the

pressure loss was observed to be 0.04 %. Theoretically, there should be no loss of total pressure

8
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for this test case because the flow is an isentropic process. The observed pressure losses are
due to numerics alone.

Figures 4.3 show the Mach number contours. It can be seen from the figure that the
computed flow field is symmetric and free of shocks.

Figure 4.4 shows the coefficient of pressure on the upper and lower surfaces. Since there was
no shock, the two curves are approximately symmetrical and no abrupt changes are observed.
Theoretically the two curves should lie on top of each other because of the symmetric flow

conditions. The deviation in the curve may be due to the coarseness of the grid.

To investigate the asymmetric Cp distribution, a parametric study is conducted and compared
with the results from the structured grid. A medium fine grid is selected which has 76 points on
the airfoil and a total of 1583 points with 3054 cells. Figure 4.5 shows the plot of the grid in
2-D. The initial condition for this test case is obtained by linearly interpolating the converged
coarse grid solution onto the new grid. Figure 4.6 shows the convergence history for this case.
The solution was started with a second order differencing scheme but after 150 iterations the
solution appeared to be diverging. At this point the solver was switched back to the first order
scheme and the solution converged w-ith é;;;;ékimately three orders of magnitude reduction in the
residuals. Figure 4.7 shows the Mach number contour plot. Figure 4.8 shows the Cp variation
over the upper and lower surfaces. In the Cp plot there is now much better agreement between
the upper and lower surface results.

Next a very fine grid is selected in which 163 points are located on the airfoil and the 2-D
grid contains a total of 2582 points and 4961 cells. Figure 4.9 shows the grid distribution. The
converged solution from the medium fine grid is interpolated on to the fine grid to provide a

better initial condition for this test case. In accordance with the approach used in the previous

12
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test case, the solution was obtained with a first order scheme. Figure 4.10 shows the convergence
history for the entire parametric study. Figure 4.11 shows the Cp distribution. For this test, the
curves in the Cp plot have very good ag‘éempnt. The Mach number contour plot is similar to

the medium fine grid test case and hence not shown here.

To obtain a good resolution of the contour plots, the grids were concentrated near the nose
and tail of the airfoil. The 2-D grid contained 120 points on the airfoil and a total of 2193 points
and 4229 cells. Figure 4.12 shows the grid distribution. The convergence history is illustrated in
Fig. 4.13. The solution was started from a free stream initial condition with a first order scheme,
and when the residuals dropped by one order of magnitude the solver automatically switched over
to a second order scheme. A steady state solution was obtained with approximately two orders
of magnitude reduction in the residuals. Figure 4.14 shows the Mach number plot where a clear
resolution is seen near the nose and tail of the airfoil. Figure 4.15 shows the Cp distribution.
Comparison of pressure distribution for the four different cases is shown in Figs. 4.16 and 4.17.
The results show that the solution improves with the increase in the number of grid points on
the airfoil. Hence it is concluded that a very close resolution of the grid point is required near
the airfoil to attain a satisfactory result.

CASE 2

To confirm the results obtained from the unstructured grid, and to have a comparative study,
structured grid was generated around the same airfoil with GRIDGEN code.
The physical dimensions were maintained the same as that in the unstructured grid. A C-H

type grid was generated and computations were performed with a Mach number of 0.5 at zero

angle of attack.

19
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Figure 4.18 shows the coarse grid with 38 points around the airfoil and 49 points in the
normal direction. Figure 4.19 shows the Mach number contour plot and Fig. 4.20 the Cp
distribution. Both figures show the symmetric distribution of the flow field quantities. The
Cp values for the top and bottom surfaces exactly match each other. Figure 4.21 shows the
comparison of Cp between structured and unstructured grids. Near the stagnation point, the
unstructured grid predicts the flow accurately but the structured grid gives a poor result. This
might be due to the coarse distributiq;rzﬁgf the grid points near the leading edge.

To investigate the leading edge inaccuracy, a medium fine grid is selected with the same
number of grid points as in the unstructured grid i.e., 76 points. Figure 4.22 shows the grid
distribution. Computations were performed with free stream initial conditions, and Mach number
contours for a steady state solution are plotted in Fig. 4.23. Again, a symmetric distribution
of flow field quantities is seen. The Cp plot is shown in Fig. 4.24 and Fig. 4.25 shows the
comparison with the unstructured grid. A better prediction of the flow field quantities is seen

near the leading edge.

Next, a very fine grid with 163 points around the surface of the airfoil is generated. In this
case also the solution was started with the free stream initial condition. Figure 4.26 shows the
grid distribution and Fig. 4.27 the Mach number contour plot. Coefficient of pressure for the
top and bottom surface is shown in Fig. 4.28. The flow field is symmetrical and a very good
estimation of the flow field quantities is seen near the leading edge. Figure 4.29 shows the Cp
comparison with the unstructured grid and Fig. 4.30 shows the comparison of Cp for different
grid concentration. It is seen that as the grid is concentrated around the airfoil better results
are obtained. Coefficient of pressure distribution along the surface for both structured and

unstructured grid is compared with the experimental values obtained by Harris [9] in Fig. 4.31.
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Its seen that the structured grid has a much better agreement with the experimental values than
unstructured grid. This might be due to the efficient flow solver used for structured grid than
the unstructured grid.

Comparison between the structured and unstructured grid for the various grid concentration
is shown in Table 1. The table also shows the percentage of error in pressure calculated at the
stagnation point. It is seen from the table that structured grid requires more number of points to
accurately predict the flow field when compared to unstructured grid.

Case 3

In this case the same airfoil was considered as in case 1 but for a Mach number of 0.84 and
1.25° angle of attack. Figures 4.32 and 4.33 show the Mach number and pressure contours. Here,
a shock in the form of an expansion wave is observed over the top surface and a compression
wave at the bottom surface. Figure 4.34 shows the coefficient of pressure plotted over the upper
and lower surface. For this case the lift and drag coefficient were computed to be C; = 0.07,
Cq = 0.02
Case 4

In this test case a biplane is considered made up of two NACA 0012 airfoils. The outer
boundaries are located at a distance of ten chord lengths. The distance between the two airfoils
is one chord length with the top airfoil shifted from the center by 0.5 chord lengths. The grid

for this case is shown in fig. 4.35. The above geometry was tested for a Mach Number of 0.8
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and zero angle of attack. Overall, the Mach number contour plot in Fig. 4.36 is in good

agreement with the results obtained by Hwang [7].
Case 5

In this case a four-element airfoil system is considered. The geometry represents a section
of a wing in its landing configuration. Figure 4.37 shows the coarse mesh generated in 2-D with
5354 points, 10469 cells and 245 boundafy points. Figure 4.38 shows the fine mesh consisting
of 13898 points, 454 boundary points and 27348 cells.

The coarse mesh was taken for parametric study and run under the same conditions as that
in Ref. [1] (ie. a Mach Number of 0.3 and 5 degrees angle of attack ). Figure 4.39 shows the
convergence history with first order differencing. The residuals dropped by about one and half
orders of magnitude and then remained constant. Figure 4.40 shows the convergence history
when the program was set for automatic selection of differencing. The program started with first
order differencing and when the residuals dropped by one order of magnitude it switched over to
second order. The jump in the curve shows the change in the order of differencing. The second
order differencing however did not work as expected since a very coarse mesh was selected.
The plots shown for the variation of different parameters are plotted for first order differencing.

Figure 4.41 shows the coefficient of pressure plotted over the top and bottom surfaces. The
figure has the same trend as that shown in Ref. [1]. The variation in values are due to the
fact that in Ref. [1] solution adaptive techniques are employed and hence a better grid point
distribution is obtained.

Figures 4.42 and 4.43 show the Mach number and pressure contours. The plots are in good

agreement with that shown in Ref. [8].
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Fig. 4.38 Fine mesh for 4-element airfoil.
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Case 6

An ONERA M6 wing is used as a 3-D test case to generate unstructured grid. The wing has
a leading edge sweep of 30 degrees, an aspect ratio of 3.8, taper ratio of 0.56, and symmetrical
airfoil sections. The wing has a root chord of 0.67 and a semispan b of 1.0 with a rounded
tip. The computational domain is bounded By a rectangular box with boundaries at - 6.5 <
x<11.0,00<y<25and - 65 <z <65 Transonic solutions are computed on the two
grids shown in Figs. 4.44 and 4.45 at M., = 0.84 and « = 3.06°. The solutions were started
with a free stream initial conditions with first order scheme and when the residuals dropped
by one order of magnitude, at which the solver automatically switched over to higher order
scheme. A comparison of wing surface pressure contours for the two mesh is shown in Figs.
4.46 and 4.47. The contours on both meshes show double shock wave on the upper surface.
The contours on mesh2 show much sharper shock waves than the first one, demonstrating an
effect of mesh density.

Coefficients of lift drag and pitching moment about the wing apex are given in Table 2. The

table also shows the number of grid points and cells in each of the mesh used. The values are

compared with that in Ref. [10].
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Mesh 1

Mesh 2

Number of Cells

45,335 / 47,344*

94,257 | 98,317*

Number of Nodes

9,062 / 9,401*

18,357 / 19,048*

Number of Boundary Faces

2,829 | 2,932%

5,146 / 5,196*

Lift Coefficient

0.2879 / 0.2892*

0.2912 / 0.2893*

Drag Coefficient

0.0184 / 0.0195*

0.0154 / 0.0167*

Moment Coefficient

-0.1726 / -0.1715*

-0.1733 / -0.1702*

* Values taken from Ref.

Table 2. Comparison of ONERA M6 wing values with Ref. [10]
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5. CONCLUDING REMARKS

In this study the superiority of unstructured grid over structured grid is demonstrated.
Unstructured grids generated by VGRID3D software is compared with structured grids generated
by GRIDGEN code. Specific problems considered are NACA 0012 airfoil, bi-plane consisting
of two NACA 0012 airfoils, a four element airfoil in its landing configuration and an ONERA
M6 wing. Inviscid time dependent solutions are computed for these geometries and compared
with standard test results. A grid convergence study is conducted for NACA 0012 airfoil and
compared with structured grid. The results obtained by NACA 0012 airfoil using unstructured
grid showed an asymmetric distribution of flow field quantities and a fine distribution of grid
was required to remove this asymmetry. On the other hand, the structured grid predicted a very
symmetric distribution, but when the total number of points were compared the structured grid
required more number of points.

For future studies its is recommended that unstructured grids be used with improved surface
definition like (NURBS) around corhplex configurations. It is also advocated that refined model
geometry be created before analyses are performed. Three-dimensional prismatic elements which
are structured in the normal direction and unstructured in the axial direction will be a good test

case for incorporating viscous terms.
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